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The velocity of solvent flow in paper chromatography .is often an important variable 
influencing the resolution and indirectly the RF value of solute zonesl. The influence of 
velocity on resolution has not been fully studied in paper chromatography, but 
theories of the chromatographic process2 as well as esperiments in the basically 
similar method of gas chromatography3 show that flow velocity is important. Unlike 
column chromatography the flow rate cannot be controlled by an applied pressure 
since in most cases the driving forces for flow are capillary in nature. Three methods 
are currently available for controlling solvent velocity in a given paper-solvent 
system at a specified temperature. These are (I) the application of esternal forces 
such as centrifugal and gravitational, (2) the addition of surface-active agents to 
alter the capillary driving forces (this will also influence the chromatographic process 
to a greater or lesser estent), and (3) the use of different paper geometries such as 
wick system. The latter method, which is the subject of this communication, has been 
used especially with circular (horizontal) chromatography with wicks4. The general 
problem has been discussed by MUELLER ct al.“. 

An accurate picture of solvent flow in paper is given by assuming that the move- 
ment of solvent is governed by the diffusion equations in which the diffusion coefficient 
is a function of solvent concentration 1. The equation (Fick’s second law) is conse- 
quently nonlinear and difficult to solve. If, in addition, one adds the complications 
of variable geometry, the problem becomes amenable only to estended machine 
calculations. An approximate theory is presented here which avoids these difficulties, 
and still gives reasonably quantitative predictions of flow rate. 

D'ARCY found that the flow velocity, or flus, in a porous media is proportional 
to the pressure gradient0 
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where 2 is the mass flus 
(lo, equals yW and hence 

of solvent per unit width, TV, of paper strip. The total flux, 

. 
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Integrating along the strip from the solvent source at z,, to the solvent front at zf, 
we have dz --p=40 if_ 

c s W(4 
(3) 

-0 

,where P is the capillary pressure change from the saturated to the dry paper. Com- 
bining this equation with the assumption that the rate of advance of the front is 
proportional to the flux, i.c., dzf/dt = bq, and integrating, we have 

(4) 

where capillary flow begins at t,, which, in most cases, is arbitrarily set equal to zero. 
The flow rate coefficient, x, equals - zbcP,‘and is a function of the paper-solvent 
.system. Eqn. (4) is derived on the basis that the flux is constant at every cross section, 
.and that the solvent concentration is uniform throughout the paper. Such an assump- 
tion is in error in view of the known concentration gradientsl, but it is necessary in 
order to obtain mathematical solutions in closed form. 

Eqn. (4) has been integrated for the following geometries: 
I. Rectangular strips, z/z = xt, the well known parabolic flow equation5~7~8. 
2. Tapered strips with T/T’ = a t_ WZZ, zO = o, m either positive or negative, 

(z + z.f)2 [In (I 5 7) - &] + + (2)’ = xt 

3. Strip with width discontinuity, T/I’ = a for z = o to I, W = .sa for z = I 
to co (e < I). Allowing for the compression of the streamlines a distance k before 
the discontinuity, we obtain for zf > I 

zfz - 6 (Zf - I) = xl 

g = 2 (I - h) (I -&) 
(6) 

or, in terms of the dimensionless parameters, t = 1x/12 and y = zfll 

Y2 -+-I) =t (7) 

4. Radial flow in which the solvent source is located a distance zO from the center 
of the disc 

zf!2 ln zf - & (Zf2 - 202) = xt (5) 
20 

5. Radial flow with a rectangular wick of length L and width a (other wicks such 
as strings have an effective width proportional to their cross sectional area). Under 
usual operating conditions we have L > a and zf > a. With these assumptions an 
approximate solution to eqn. (4) is xa 

ZJ.2 = - 
2nL 

t (9) 

This is parabolic flow in which the flow rate coefficient, xr = xa/znL, is significantly 
less than that for rectangular flow, 3~. As shown by the form of xr, the flow rate in 
radial-wick systems can be very easily controlled by varying the length to width 
ratio. 
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Data on the above examples were taken using water on Whatman No. I paper 
at a temperature of 3o” & 0.5”. The use of horizontal flow eliminated gravitational 
effects. The value of ic was determined using rectangular flow. The esperimental 

t (Six) 

Fig. I. Flow in tapered strips, (I), rectangular strips ; (2), experimental and calculated converging 
flow (a = 2.0 cm, ~8 = - 0.231) ; (3), experimental and calculated diverging flow (a = 0.32 cm, 

?Tz = 0.255). 

l Exparimontal,Cace I.~bBcm,a~3cm, 602) 
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Fig. 2. Flow characteristics with discontinuous width. The width of the shoulder, a (I - ~)/2 
has been used for It. 

and calculated results are shown in Figs. 1-4. The agreement is satisfactory in view 
of the assumptions made. 

Several points are of particular interest in discussing the results obtained here. 
First, it can be seen that in all cases of diverging flow (tapered strip with m > I, 

radial and radial-wick) the front advances more rapidly than predicted while with 
converging flow (tapered strip with m < I, width discontinuity) the observed 
velocity is less than calculated, This can be esplained in terms of the concentration 
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gradients. Solvent flux is actually divided into two roles, one being the movement of 
the solvent front as predicted here, and the other being the progressive saturation of 
the paper, a factor not accounted for in the present theory. In diverging flow, with a 
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Fig. 3. Radial flow with q, = 0.50 cm. The solid line is calculated for radial flow and tho dotted 
line for rectangular flow. both with x = 0.075 cm2 SX-~. 

0 Wick I Pz4.60, o=O.66cm. 
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Fig. 4. Radial flow with wick dimensions approximately, 2x Z/n = 4”. 

relatively wide solvent front, a disproportionate amount goes to the former. This 
leads to an increased frontal velocity. In converging flow a lesser amount is available 
for advancing the front, and the decreased velocity results. 

In the case of radial flow with wicks a very satisfactory straight line is obtained 
plotting zf2 against time. Furthermore, significant changes in length and width leave 
the effect of the wick unchanged as long as the length-width ratio is constant. As in 
other cases of diverging flow, the frontal velocity is larger than predicted.The measured 
x,. is x/z0 rather than x/42. The use of a large range of wick sizes has shown that the 
,experimentally measured xr is approximately x&L, twice as large as the calculated 
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value, xn/znL. This rule can be effectively used in predicting and controlling flow 
velocity. 

The results obtained here show that with a wick source, the area enclosed by the 
moving front increases linearly with time. This is verified in the work of HIZNDRICIC- 
SON, BERUEFFY AND MCINTYRE~, and by LE STRANGE AND M~~LJ.IzR~~. 

SU&I&IARy 

The flow of liquids in paper has been described on the assumption that paper is 
either saturated or dry. With this assumption a simple mathematical treatment can be 
carried out. It is shown how the use of different paper geometries can be used to control 
flow velocity. Since paper can be partially saturated certain deviations from exper- 
imental data are noted. These deviations are qualitatively predictable. On the basis of 
the analysis and the experimental results provided here, reasonably accurate predic- 
tions of the flow velocity can be made. 
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